GYANODAYA GURUKUL

Affiliated to C.B.S.E., Delhi Gola Road, Danapur, Patna – 801503

Half Yearly Examination – (2019-20)

CLASS – X TIME – 3 HRS.

SUBJECT - MATHEMATICS

FULL MARKS – 80

General Instructions:

- 1. All the questions are compulsory.
- 2. The questions paper consists of 40 questions divided into 4 sections A, B, C and D.
- 3. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.

SECTION -A

- 1. What is the greatest possible speed at which a man can walk 52 km and 91 km in an exact number of minutes?
- (a) 17 m/min (b) 7 m/min (c) 13 m/min(d) 26 m/min
- 2. If A = 2n + 13, B = n + 7, where n is a natural number then HCF of A and B is:
 - (a) 2(b) 1(c) 3(d) 4
- 3. Given that LCM (91, 26) = 182, then HCF (91, 26) is ?
- 4. The 9th term of an A.P. is 449 and 449th term is 9. The term which is equal to zero is
 - (a) 508th (b) 502th (c) 501th(d) none of these
- 5. Sum of first *n* natural number is

(a)
$$\frac{n(n-1)}{2}$$

(b)
$$\frac{n(n+1)}{2}$$

(c)
$$\frac{n(n+1)(2n+1)}{6}$$

(d)
$$\left[\frac{n(n+1)}{2}\right]^2$$

- 6. Write the zeroes of the polynomial $x^2 x 6$.
- 7. What types of lines do the pair of equations x=c and y=c represent graphically?
- 8. Write the common difference of an A.P. whose nth term is 3n + 5.

- 9. Find the distance of the point (-6, 8) from the origin.
- 10. For what value of k are the roots of the quadratic equation $3x^2 + 2kx + 27 = 0$ real and equal?
- 11. If sin B= 12/13, then find cot B.
- 12. Find value of x for which $\sqrt{3}\sin x = \cos x$.
- 13. $\sin 3\theta = \cos (\theta 6^{\circ})$ and 3θ and $\theta 6^{\circ}$ are acute angles, find value of θ .
- 14. Solve for x:

$$\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$$

- 15. Find the value of p for which the points (-5, 1), (1, p) and (4, -2) are collinear.
- 16. If $\frac{5}{2}$, a, 2 are three consecutive terms of an A.P., then find the value of a?
- 17. Which term of the A.P.:

18. The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is:

(a)
$$x^2 + 3x - 2(b)$$
 $x^2 - 2x + 3(c)$ $x^2 - 3x + 2(d)$ $x^2 - 3x - 2$

- 19. For what value of p, (-4) is a zero of the polynomial $x^2 2x (7p + 3)$?
- 20. Find the coordinates of the point equidistant from the points A(1, 2), B (3, -4) and C(5, -6).

(a)
$$(2, 3)(b)(-1, -2)(c)(0, 3)(d)(1, 3)$$

SECTION -B

- 21. What is the HCF of 52 and 130?
- 22. Find the cubic polynomial whose zeroes are 5, 3 and -2.
- 23. Write the pair of linear equations which have solutions x = 2, Y = -2.
- 24. For what value of p are 2p 1, 7 and 3p three consecutive terms of an A.P.?
- 25.If point P (x, y) is equidistant from the points A (3, 6) and B (-3, 4), prove that 3x + y 5 = 0.
- 26. If $\csc^2\theta$ (1+cos θ) (1-cos θ) = x, then find the value of x.

SECTION -C

- 27. Prove that $\sqrt{3}$ is irrational.
- 28. If 1 is a zero of $x^3 3x^2 x + 3$ then find all other zeroes.
- 29. Find the value of m, when (m+1)x=3ky+15=0 and 5x+ky+5=0 are coincident.

- 30. Solve it on a graph 4x-3y+4=0, 4x+3y-24=0.
- 31. A two digit number is four times the sum of the digits . It is also equal to 3 times the product of digits . Find the number .
- 32.If the sum of first 7 terms of an A.P. is 49 and that of first 17 terms is 289, find the sum of n terms.
- 33. The sum of 4th and 8th terms of an A.P. is 24 and the sum of 6th and 10th terms is 44. Find the first three terms of the A.P.
- 34. Find the ratio in which point (x, 2) divides the line segment joining points (-3, -4) and (3, 5). Also find the value of x.

SECTION -D

- 35. Find all the zeroes of $2x^4 3x^3 3x^2 + 6x 2$, if two of its zeroes are 1 and $\frac{1}{2}$
- 36. The addition of numerator and denominator of a fraction is three less than twice the denominator. If the numerator and denominator are decreased by 1, the numerator becomes half the denominator. Find the fraction.
- 37. 38. Show that the triangle PQR formed by the points P ($\sqrt{2}$, $\sqrt{2}$), Q ($-\sqrt{2}$, $-\sqrt{2}$) and R ($-\sqrt{6}$, $-\sqrt{6}$) is an equilateral triangle.

39.Prove that (cosecA – sinA) (secA – cosA) =
$$\frac{1}{tanA + cotA}$$
 .

40.Prove that
$$\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \operatorname{cosecA} + \cot A$$
.